Abstract

Metabolic pathway prediction and reconstruction play crucial roles in solving fundamental and applied biomedical problems. In the case of fundamental research, annotation of metabolic pathways allows one to study human health in normal, stressed, and diseased conditions. In applied research, it allows one to identify novel drugs and drug targets and to design mimetics (biomolecules with tailored properties), as well as contributes to the development of such disciplines as toxicology and nutrigenomics. It is important to understand the role of a metabolite as a substrate (the product or intermediate participant of an enzymatic reaction) in cellular signaling and phenotype implementation according to the pivotal paradigm of biology: “one gene–one protein–one function (one trait)”. Due to the development of omics technologies, a vast body of data on the metabolome composition of living organisms has been accumulated over the past two decades. Systematization of the information on the roles played by metabolites in implementation of cellular signaling, as well as metabolic pathway reconstruction and refinement, have necessitated the development of bioinformatic tools for performing large-scale omics data mining. This paper reviews web-accessible databases relevant to metabolic pathways and considers the applications of the three types of bioinformatics methods for constructing metabolic networks (graphs for substrate–enzyme–product transformation; stoichiometric analysis of substrate–product transformation; and product retrosynthesis). It describes, step by step, a generalized algorithm for constructing biological pathway maps which explains to the researcher the workflow implemented in available bioinformatics tools and can be used to create new tools in projects requiring pathway reconstruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.