Abstract
MALDI-TOF mass spectrometry has been coupled with Internet-based proteome database search algorithms in an approach for direct microorganism identification. This approach is applied here to characterize intact H. pylori (strain 26695) Gram-negative bacteria, the most ubiquitous human pathogen. A procedure for including a specific and common posttranslational modification, N-terminal Met cleavage, in the search algorithm is described. Accounting for posttranslational modifications in putative protein biomarkers improves the identification reliability by at least an order of magnitude. The influence of other factors, such as number of detected biomarker peaks, proteome size, spectral calibration, and mass accuracy, on the microorganism identification success rate is illustrated as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.