Abstract

Short-chain peptides derived from various protein sources have been shown to exhibit diverse bio-modulatory and health-promoting effects in animal experiments and human trials. We recently reported that the oral administration of the Tyr-Trp (YW) dipeptide to mice markedly enhances noradrenaline metabolism in the brain and ameliorates the working-memory deficits induced by the β-amyloid 25-35 peptide (Aβ25-35). In the current study, we performed multiple bioinformatics analyses of microarray data from Aβ25-35/YW-treated brains to determine the mechanism underlying the action of YW in the brain and to infer the molecular mechanisms and networks involved in the protective effect of YW in the brain. We found that YW not only reversed inflammation-related responses but also activated various molecular networks involving a transcriptional regulatory system, which is mediated by the CREB binding protein (CBP), EGR-family proteins, ELK1, and PPAR, and the calcium-signaling pathway, oxidative stress tolerance, and an enzyme involved in de novo l-serine synthesis in brains treated with Aβ25-35. This study revealed that YW has a neuroprotective effect against Aβ25-35 neuropathy, suggesting that YW is a new functional-food-material peptide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.