Abstract

BackgroundRabbit Hemorrhagic Disease Virus (RHDV) belongs to the Caliciviridae family, is a highly lethal pathogen to rabbits. Increasing numbers of studies have demonstrated the existence of antigenic variation in RHDV, leading to the emergence of a new RHDV isolate (RHDVb). However, the underlying factors determining the emergence of the new RHDV and its unpredictable epidemiology remain unclear. To investigate these issues, we selected more than 184 partial and/or complete genome sequences of RHDV from GenBank and analyzed their phylogenetic relationships, divergence, and predicted protein modification sites.ResultsPhylogenetic analysis showed that classic RHDV isolates, RHDVa, and RHDVb formed different clades. It’s interesting to note that RHDVa being more closely related to classic RHDV than RHDVb, while RHDVb had a closer genetic relationship to Rabbit Calicivirus (RCV) than to classic RHDV isolates. Moreover, divergence analysis suggested that the accumulation of amino acid (aa) changes might be a consequence of adaptive diversification of capsid protein (VP60) during the division between classical RHDV, RHDVa, RHDVb, and RCV. Notably, the prediction of N-glycosylation sites suggested that RHDVb subtypes had two unique N-glycosylation sites (aa 301, 362) but lacked three other N-glycosylation sites (aa 45, 308, 474) displayed in classic RHDV and RHDVa VP60 implying this divergence of N-glycosylation sites in RHDV might affect viral virulence. Analysis of phosphorylation sites also indicated that some phosphorylation sites in RHDVa and RHDVb differed from those in classic RHDV, potentially related to antigenic variation in RHDV.ConclusionThe genetic relationship between RHDVb and RCV was closer than classic RHDV isolates. Moreover, compared to RHDV and RHDVa, RHDVb had two unique N-glycosylation sites but lacked three sites, which might affect the virulence of RHDV. These results may provide new clues for further investigations of the origin of new types of RHDV and the mechanisms of genetic variation in RHDV.

Highlights

  • Rabbit Hemorrhagic Disease Virus (RHDV) belongs to the Caliciviridae family, is a highly lethal pathogen to rabbits

  • Phylogenetic analysis of RHDV Phylogenetic analysis of RHDV isolates based on VP60 showed that RHDVb was more closely related to rabbit calicivirus (RCV) than RHDV (Fig. 1a), but another phylogenetic tree based on the complete sequence showed some RHDVa and RHDVb isolates were more closely related to RCV than to RHDV (Fig. 1b)

  • The amino acid alignment showed that amino acids which deficient in 136,137 and 716 among these RHDVa and RHDVb isolates were the same as in the RCV isolates

Read more

Summary

Introduction

Rabbit Hemorrhagic Disease Virus (RHDV) belongs to the Caliciviridae family, is a highly lethal pathogen to rabbits. The underlying factors determining the emergence of the new RHDV and its unpredictable epidemiology remain unclear. To investigate these issues, we selected more than 184 partial and/or complete genome sequences of RHDV from GenBank and analyzed their phylogenetic relationships, divergence, and predicted protein modification sites. Rabbit hemorrhagic disease (RHD) is a highly fatal infectious disease caused by RHDV, which is first discovered in China in 1984. It has been subsequently spread worldwidely within a few years, resulting in great economic losses in the rabbit industries [1, 2]. ORF2 encodes another structural protein (VP10) [24] playing part in the replication and release from infected host cells of RHDV [27]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call