Abstract

DNA methylation can be used to predict clinical outcomes and improve the classification of tumors. The present study aimed to develop a new lung adenocarcinoma (LUAD) classification system according to the immune cell gene-related methylation sites and to reveal the survival outcomes, clinical characteristics, immune cell infiltration, stem cell characteristics, and genomic variations of each molecular subgroup. The DNA methylation sites of LUAD samples collected from The Cancer Genome Atlas (TCGA) database were analyzed, and the prognosis-related differential methylation sites (DMS) were screened. Consistent clustering of the samples was conducted using ConsensusClusterPlus, and the classification results were verified by principal component analysis (PCA). The survival and clinical results, immune cell infiltration, stemness, DNA mutation, and copy number variation (CNV) of each molecular subgroup were analyzed. A total of 40 DMS were obtained by difference and univariate COX analyses, and the TCGA LUAD samples were divided into three subgroups: cluster 1 (C1), cluster 2 (C2), and cluster 3 (C3). Among these subgroups, the overall survival (OS) of C3 was significantly higher than that of C1 and C2. Compared with C1 and C3, C2 had the lowest innate immune cell and adaptive immune cell infiltration scores; the lowest stromal score, immune score, and iconic immune checkpoint expression; and the highest expression of messenger RNA (mRNA) expression-based stemness indices (mRNAsi), DNA methylation-based stemness index (mDNAsi), and tumor mutational burden (TMB). In this study, we proposed a LUAD typing system based on DMS, which was closely related to the survival, clinical features, immune characteristics, and genomic variations of LUAD, and may contribute to the development of personalized therapy for new specific subtypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call