Abstract

MicroRNAs (miRNAs) represent a class of endogenous non-coding small RNAs that play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. Thousands of miRNAs have been identified in many plant species, whereas only a limited number of miRNAs have been predicted in M. acuminata (A genome) and M. balbisiana (B genome). Here, previously known plant miRNAs were BLASTed against the Expressed Sequence Tag (EST) and Genomic Survey Sequence (GSS), a database of banana genes. A total of 32 potential miRNAs belonging to 13 miRNAs families were detected using a range of filtering criteria. 244 miRNA:target pairs were subsequently predicted, most of which encode transcription factors or enzymes that participate in the regulation of development, growth, metabolism, and other physiological processes. In order to validate the predicted miRNAs and the mutual relationship between miRNAs and their target genes, qRT-PCR was applied to detect the tissue-specific expression levels of 12 putative miRNAs and 6 target genes in roots, leaves, flowers, and fruits. This study provides some important information about banana pre-miRNAs, mature miRNAs, and miRNA target genes and these findings can be applied to future research of miRNA functions.

Highlights

  • MicroRNAs are a class of endogenous non-coding RNA molecules that are 21–24 nucleotides in length

  • We identified 32 conserved miRNAs derived from 16 Expressed Sequence Tag (EST) and 16 Genomic Survey Sequence (GSS) sequences, belonging to 13 miRNA families (Table 3)

  • Though there are a few computational approaches to identify miRNAs of plants, animals and even microorganisms, EST/GSS analysis has some advantages over other methods [19,44]

Read more

Summary

Introduction

MicroRNAs (miRNAs) are a class of endogenous non-coding RNA molecules that are 21–24 nucleotides (nt) in length. The processing and maturation of miRNAs in plants involves several steps that employ key enzymes, such as Dicer-like 1 (DCL1) [1] and HASTY [2,3]. Mature miRNAs are incorporated into the RNA-induced silencing complex (RISC) to post-transcriptionally regulate gene expression by targeting mRNA degradation or translation repression [4,5,6]. Previous research has shown that miRNAs play a key role in various metabolic and biological processes in plants, including meristem cell identity, leaf morphogenesis and polarity, floral. Identification of Banana MiRNA and Their Targets and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call