Abstract

Introduction: Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which began in late 2019 in Wuhan, China, has become a global epidemic. Angiotensin 2 converting enzyme (ACE2) acts as a receptor for host function to cause acute coronavirus 2 acute respiratory syndrome (SARS-CoV-2). ACE2 is abundantly expressed in different cells of different human organs. In human physiology, ACE2 is a major player in the renin-angiotensin-aldosterone (RAAS) system by degrading angiotensin II. Many factors have been associated with altered ACE2 expression and the severity and progression of COVID-19, including microRNAs that may be effective in it. Identifying pathological changes due to SARS-CoV-2 infection is important because it has major implications for understanding the pathophysiology of COVID-19 and developing evidence-based treatment strategies. Currently, many intervention strategies are being explored in ongoing clinical trials. Objective: The aim of this study is to use bioinformatics databases to find potential antiviral therapies against SARS-CoV-2 through host microRNAs (miRNAs) that can reduce viral gene expression to inhibit virus entry and replication. Methods: Using different algorithms in TargetScan, DIANA, ENCORI and miRWalk databases, the potential microRNAs were identified that target ACE2. Then, a score table was prepared from the candidate microRNAs, based on the affinity of the seed region of microRNAs and the 3`-UTR region of the ACE2 gene. Finally, microRNAs with higher scores were chosen as candidates for practical analysis. Results: The results of Bioinformatical analysis showed that Has-miR-200c-3p, Has-miR-29a, Has-miR-29c, and Has-miR-942 are most likely to inhibit ACE2. These microRNAs are the most potent factors that might be affected on ACE2 during virulence. Conclusion: It seems that ACE2 is under the control of the miR-200c-3p and plays a crucial role in the pathophysiology process. Therefore, this microRNA can be considered as a suitable new candidate for experimental evaluation.

Highlights

  • Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which began in late 2019 in Wuhan, China, has become a global epidemic

  • The potential path of the transmission of the SARS-CoV-2 virus to the respiratory and gastrointestinal tract is through angiotensin-converting enzyme 2 (ACE2), which interfaces with the external environment

  • At this stage, using different available bioinformatics algorithms in TargetScan, Diana, miRWalk, and StarBase databases, different miRNAs on the ACE2 gene were investigated, and a scoreboard was prepared from the candidate miRNAs

Read more

Summary

Introduction

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which began in late 2019 in Wuhan, China, has become a global epidemic. Angiotensin 2 converting enzyme (ACE2) acts as a receptor for host function to cause acute coronavirus 2 acute respiratory syndrome (SARS-CoV-2). Objective: The aim of this study is to use bioinformatics databases to find potential antiviral therapies against SARS-CoV-2 through host microRNAs (miRNAs) that can reduce viral gene expression to inhibit virus entry and replication. Results: The results of Bioinformatical analysis showed that Has-miR-200c-3p, Has-miR-29a, HasmiR-29c, and Has-miR-942 are most likely to inhibit ACE2 These microRNAs are the most potent factors that might be affected on ACE2 during virulence. Severe acute respiratory syndrome coronavirus 2 (SARSCoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is associated with a high risk of acute respiratory distress syndrome and mortality. ACE2 was present in the epidermal layer of the skin and the mucous membranes of the mouth and the nose while ACE2 was not found in the lymph tissues and bile structures of the liver [2, 3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.