Abstract
The Na+, K+-ATPase is an integral membrane protein which uses the energy of ATP hydrolysis to pump Na+ and K+ ions across the plasma membrane of all animal cells. It plays crucial roles in numerous physiological processes, such as cell volume regulation, nutrient reabsorption in the kidneys, nerve impulse transmission, and muscle contraction. Recent data suggest that it is regulated via an electrostatic switch mechanism involving the interaction of its lysine-rich N-terminus with the cytoplasmic surface of its surrounding lipid membrane, which can be modulated through the regulatory phosphorylation of the conserved serine and tyrosine residues on the protein's N-terminal tail. Prior data indicate that the kinases responsible for phosphorylation belong to the protein kinase C (PKC) and Src kinase families. To provide indications of which particular enzyme of these families might be responsible, we analysed them for evidence of coevolution via the mirror tree method, utilising coevolution as a marker for a functional interaction. The results obtained showed that the most likely kinase isoforms to interact with the Na+, K+-ATPase were the θ and η isoforms of PKC and the Src kinase itself. These theoretical results will guide the direction of future experimental studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.