Abstract

Carbon nanomaterials are widely produced and used in industry, medicine and scientific research. To examine the impact of exposure to nanoparticles on human health, the human airway epithelial cell line, Calu-3, was used to evaluate changes in the cellular proteome that could account for alterations in cellular function of airway epithelia after 24 hexposure to 10 μg/mL and 100 ng/mLof two common carbon nanoparticles, single- and multi-wall carbon nanotubes (SWCNT, MWCNT). After exposure to the nanoparticles, label-free quantitative mass spectrometry (LFQMS) was used to study the differential protein expression. Ingenuity Pathway Analysis (IPA) was used to conduct a bioinformaticanalysis of proteins identified in LFQMS. Interestingly, after exposure to ahigh concentration (10 μg/mL; 0.4 μg/cm2) of MWCNT or SWCNT, only 8 and 13 proteins, respectively, exhibited changes in abundance. In contrast, the abundance of hundreds of proteins was altered in response to a low concentration (100 ng/mL; 4 ng/cm2) of either CNT. Of the 281 and 282 proteins that were significantly altered in response to MWCNT or SWCNT respectively, 231 proteins were the same. Bioinformatic analyses found that the proteins in common to both nanotubes occurred within the cellular functions of cell death and survival, cell-to-cell signaling and interaction, cellular assembly and organization, cellular growth and proliferation, infectious disease, molecular transport and protein synthesis. The majority of the protein changes represent a decrease in amount suggesting a general stress response to protect cells. The STRING database was used to analyze the various functional protein networks. Interestingly, some proteins like cadherin 1 (CDH1), signal transducer and activator of transcription 1 (STAT1), junction plakoglobin (JUP), and apoptosis-associated speck-like protein containing a CARD (PYCARD), appear in several functional categories and tend to be in the center of the networks. This central positioning suggests they may play important roles in multiple cellular functions and activities that are altered in response to carbon nanotube exposure.

Highlights

  • Nanotechnology is the manipulation of matter at atomic and molecular scales from 1 to 100 nanometers and the creation of new materials with wide ranging applications in medicine, electronics, biomaterials and energy production

  • CNTs are hollow carbon tubes made of a single or several concentrically arranged cylindrical graphite layers capped by fullerenic hemispheres, which are referred to as single- and multi-wall carbon nanotubes (SWCNT, MWCNT)

  • Statistical analysis by ANOVA (p < 0.01) and Pairwise Multiple Comparisons (p < 0.05) determined that incubation with CNT at concentrations of 10 μg/mL and 100ng/mL resulted in significant changes protein expression profiles (Figure 1)

Read more

Summary

Introduction

Nanotechnology is the manipulation of matter at atomic and molecular scales from 1 to 100 nanometers and the creation of new materials with wide ranging applications in medicine, electronics, biomaterials and energy production. The special properties of nanoparticles include unique surface area/volume ratios, refractive indices, and biological and chemical reactivity. These properties help to extend their applications, but raise concerns about their toxicity and environmental impact [1,2]. Potential effects on human health are an issue in the manufacturing workplace and after environmental exposure. One family of widely used nanomaterials is carbon nanotubes (CNTs). CNTs are hollow carbon tubes made of a single or several concentrically arranged cylindrical graphite layers capped by fullerenic hemispheres, which are referred to as single- and multi-wall carbon nanotubes (SWCNT, MWCNT). In addition to many industrial applications, they can be used as scaffolds for cell culture [2]

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call