Abstract
Pomacea canaliculata is a mollusk potentially useful as a biomonitor species of freshwater quality. This work explores the ability of snail tissues and symbiotic corpuscles to bioconcentrate and depurate mercury, arsenic, and uranium. Adult snails cultured in metal-free reconstituted water were exposed for eight weeks (bioaccumulation phase) to water with Hg (2 μgL−1), As (10 μgL−1), and U (30 μgL−1) and then returned to the reconstituted water for other additional eight weeks (depuration phase). Elemental concentrations in digestive gland, kidney, symbiotic corpuscles and particulate excreta were determined by neutron activation analysis. The glandular symbiotic occupancy was measured by morphometric analysis. After exposure, the kidney showed the highest concentration of Hg, while the digestive gland accumulated mainly As and U. The subcellular distribution in symbiotic corpuscles was ∼71%, ∼48%, and ∼11% for U, Hg, and As, respectively. Tissue depuration between weeks 8 and 16 was variable amongst elements. At week 16, the tissue depuration of U was the highest (digestive gland = 92%; kidney = 80%), while it was lower for Hg (digestive gland = 51%; kidney = 53%). At week 16, arsenic showed a differential pattern of tissue depuration (digestive gland = 23%; kidney = 88%). The symbiotic detoxification of the three elements in excreta was fast between weeks 8 and 10 and it was slower after on. At the end of the depuration, each element distributed differentially in digestive gland and symbiotic corpuscles. Our findings show that symbiotic corpuscles, digestive gland and kidney P. canaliculata are sensitive places for biomonitoring of Hg, As and U.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.