Abstract

New techniques are required for earlier diagnosis and response to treatment of pancreatic cancer. Here, a label-free approach is reported in which circulating pancreatic tumor cells are isolated from healthy peripheral blood cells via cell bioimprinting technology. The method involves pre-fabrication of pancreatic cell layers and sequential casting of cell surfaces with a series of custom-made resins to produce negative cell imprints. The imprint is functionalized with a combination of polymers to engineer weak attraction to the cells which is further amplified by the increased area of contact with the matching cells. A flow-through bioimprint chip is designed and tested for selectivity toward two pancreatic tumor cell lines, ASPC-1 and Mia-PaCa-2. Healthy human peripheral blood mononuclear cells (PBMCs) are spiked with pancreatic tumor cells at various concentrations. Bioimprints are designed for preferential retention of the matching pancreatic tumor cells and with respect to PBMCs. Tumor bioimprints are capable of capturing and concentrating pancreatic tumor cells from a mixed cell population with increased retention observed with the number of seedings. ASPC-1 bioimprints preferentially retain both types of pancreatic tumor cells. This technology could be relevant for the collection and interrogation of liquid biopsies, early detection, and relapse monitoring of pancreatic cancer patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.