Abstract

The pattern of biohydrogenation of fatty acids from fresh alfalfa or alfalfa hay supplemented with 3 concentrations (0, 4, and 8%) of sucrose was studied at a constant pH of 6.2. Four continuous culture fermenters were used in a 4×4 Latin square design to test the hypothesis that fresh forage would increase flow of vaccenic acid (VA) from the fermenters compared with the same forage in hay form and that this difference would be diminished by adding sucrose to the hay diet by changing the bacterial community profile. Effluent was collected from each of the 4 fermenters during the last 3 d of each 10-d period. Nutrient digestibility, volatile fatty acids (VFA), and fatty acids in the effluent were measured. Flow of bacterial organic matter (OM) and neutral and acid detergent fiber and acid detergent fiber digestibilities were higher for fresh alfalfa than alfalfa hay. True OM digestibility of alfalfa hay tended to linearly decrease with sucrose supplementation. However, microbial efficiency and flow of bacterial OM (g/d) linearly increased with sucrose addition. There was no change in total VFA concentration; however, proportion of acetate linearly decreased and proportion of butyrate linearly increased with sucrose addition. Fresh alfalfa increased total biohydrogenation of fatty acids compared with than hay. Vaccenic acid flow (mg/d) was much higher for fresh alfalfa compared with alfalfa hay (216 vs. 41) and VA was the predominant 18:1 isomer, followed by trans-13 18:1; however, sucrose had no effect on VA flow. The percentage of VA (of total trans-18:1) was not different between fresh alfalfa and hay, whereas percentage of trans-10 18:1 was much lower for fresh alfalfa. Therefore, the ratio of VA to trans-10 18:1 was higher for fresh alfalfa. Flow of trans-12 18:1 linearly increased, whereas flows of cis-12 and total cis-18:1 had quadratic responses to sucrose supplementation. Total biohydrogenation and biohydrogenation of linoleic and linolenic acids linearly decreased with sucrose; however, there was no effect of sucrose on total trans fatty acid flow. Sucrose may be more detrimental to the last step of biohydrogenation of VA. The effects of sucrose on biohydrogenation and concentration of VFA may have been caused by a shift in microbial population by mechanisms that are independent of pH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call