Abstract

Production of hydrogen by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana was studied in serum flasks and in pH-controlled bioreactors with glucose, and hydrolyzed and untreated potato steam peels (PSP) as carbon sources. Two types of PSP hydrolysates were used: one in which the starch in the PSP was liquefied with alpha-amylase, and one in which the liquefied starch was further hydrolyzed to glucose by amyloglucosidase. When the PSP hydrolysates or untreated PSP were added at circa 10–14 g/L of glucose units, both strains grew well and produced hydrogen with reasonable to high molar yields (2.4–3.8 moles H 2/mole glucose units), and no significant production of lactate. The hydrogen production rates and yields were similar with untreated PSP, hydrolyzed PSP, and pure glucose, showing that C. saccharolyticus and T. neapolitana are well equipped for the utilization of starch. When the concentrations of the substrates were increased, growth and hydrogen production of both strains were hampered. At substrate concentrations of circa 30–40 g/L of glucose units, the molar hydrogen yield of C. saccharolyticus was severely reduced due to the formation of high amounts of lactate, while T. neapolitana was unable to grow at all. The results showed that PSP and PSP hydrolysates are very suitable substrates for efficient fermentative hydrogen production at moderate substrate loadings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.