Abstract

A “temperature-shift” strategy was developed to improve reducing sugar production from bacterial hydrolysis of cellulosic materials. In this strategy, production of cellulolytic enzymes with Cellulomonas uda E3-01 was promoted at a preferable temperature (35 °C), while more efficient enzymatic cellulose hydrolysis was achieved under an elevated culture temperature (45 °C), at which cell growth was inhibited to avoid consumption of reducing sugar. This temperature-shift strategy was shown to markedly increase the reducing sugar (especially, monosaccharide and disaccharide) concentration in the hydrolysate while hydrolyzing pure (carboxymethyl-cellulose, xylan, avicel and cellobiose) and natural (rice husk, rice straw, bagasse and Napier-grass) cellulosic materials. The cellulosic hydrolysates from CMC and xylan were successfully converted to H 2 via dark fermentation with Clostridium butyricum CGS5, attaining a maximum hydrogen yield of 4.79 mmol H 2/g reducing sugar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.