Abstract

The food industry is by far the largest potable water consuming industry that releases about 500 million m3 of wastewater per annum with very high organic loading. Simple treatment of this stream using conventional technologies often fails due to cost factors overriding their pollution abating capacity. Hence, recently the focus has been largely centered on valorization through combinatorial recovery of valuable components and reclaiming good quality water using integrated membrane process. Membrane processes practically cover all existing and needed unit operations that are used in wastewater treatment facilities. They often come with advantages like simplicity, modularity, process or product novelty, improved competitiveness, and environmental friendliness. Thus, the main focus of this PhD thesis is development of integrated membrane process comprising microfiltration (MF), forward osmosis (FO), ultrafiltration (UF) and nanofiltration (NF) for valorization of food based wastewater within the logic of zero liquid discharge. As a case study, vegetation wastewater coming from olive oil production was taken. Challenges associated with the treatment of vegetation wastewater are: absence of unique hydraulic or organic loadings, presence of biophenolic compounds, sever membrane fouling and periodic release of large volume of wastewater. Especially presence of biophenolic compounds makes the wastewater detrimental to the environment. However, recovering these phytotoxic compounds can also add economic benefit to the simple treatment since they have interesting bioactivities that can be exploited in the food, pharmaceutical and cosmetic industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call