Abstract

Abstract Land-use and land-cover changes (hereafter simply “land use”) alter climates biogeophysically by affecting surface fluxes of energy and water. Yet, near-surface temperature responses to land use across observational versus model-based studies and spatial-temporal scales can be inconsistent. Here we assess the prevalence of the historical land use signal of daily maximum temperatures averaged over the warmest month of the year (tLU) using regularized optimal fingerprinting for detection and attribution. We use observations from the Climatic Research Unit and Berkeley Earth alongside historical simulations with and without land use from phase 6 of the Coupled Model Intercomparison Project to reconstruct an experiment representing the effects of land use on climate. To assess the signal of land use at spatially resolved continental and global scales, we aggregate all input data across reference regions and continents, respectively. At both scales, land use does not comprise a significantly detectable set of forcings for two of four Earth system models and their multimodel mean. Furthermore, using a principal component analysis, we find that tLU is mostly composed of the nonlocal effects of land use rather than its local effects. These findings show that, at scales relevant for climate attribution, uncertainties in Earth system model representations of land use are too high relative to the effects of internal variability to confidently assess land use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.