Abstract

In wireless sensor networks, coverage and connectivity are the fundamental problems for monitoring the targets and guaranteed information dissemination to the far away base station from each node which covers the target. This problem has been proved NP-complete problem, where a set of target points are given, the objective is to find optimal number of suitable positions to organize sensor nodes such that it must satisfy both k-coverage and m-connectivity requirements. In this paper, a biogeography-based optimization (BBO) scheme is used to solve this problem. The proposed BBO-based scheme provides an efficient encoding scheme for the habitat representation and formulates an objective function along with the BBO’s migration and mutation operators. Simulation results show the performance of the proposed scheme to find approximate optimal number of suitable positions under different combinations of k and m. In addition, a comparative study with state-of-art schemes has also been done and its analysis confirms the superiority of the proposed BBO-based scheme over state-of-art schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call