Abstract
The impact of maternal microbial influences on the early choreography of the neonatal calf microbiome were investigated. Luminal content and mucosal scraping samples were collected from ten locations in the calf gastrointestinal tract (GIT) over the first 21 days of life, along with postpartum maternal colostrum, udder skin, and vaginal scrapings. Microbiota were found to vary by anatomical location, between the lumen and mucosa at each GIT location, and differentially enriched for maternal vaginal, skin, and colostral microbiota. Most calf sample sites exhibited a gradual increase in α-diversity over the 21 days beginning the first few days after birth. The relative abundance of Firmicutes was greater in the proximal GIT, while Bacteroidetes were greater in the distal GIT. Proteobacteria exhibited greater relative abundances in mucosal scrapings relative to luminal content. Forty-six percent of calf luminal microbes and 41% of mucosal microbes were observed in at-least one maternal source, with the majority being shared with microbes on the skin of the udder. The vaginal microbiota were found to harbor and uniquely share many common and well-described fibrolytic rumen bacteria, as well as methanogenic archaea, potentially indicating a role for the vagina in populating the developing rumen and reticulum with microbes important to the nutrition of the adult animal.
Highlights
The impact of maternal microbial influences on the early choreography of the neonatal calf microbiome were investigated
Luminal content and mucosal scraping samples were collected from ten locations in the calf gastrointestinal tract (GIT) over the first 21 days of life, along with postpartum maternal colostrum, udder skin, and vaginal scrapings
The relative abundance of Firmicutes was greater in the proximal GIT, while Bacteroidetes were greater in the distal GIT
Summary
The impact of maternal microbial influences on the early choreography of the neonatal calf microbiome were investigated. The successional development of the rumen appears to be far more protracted with substantial dynamism initially before settling on a climactic adult-like state[8], similar to what has been described in humans[39] These changes may partially reflect dietary transitions from colostrum to milk or milk replacer, and to a progression of solid diets given in production settings to adapt the animal to an adult feeding regimen[17]. Because colostrum could potentially contain autocthonous microbiota from the mammary alveolus or intralobular duct, along with auto- or allocthonous microbiota picked up from the teat or surrounding skin (potentially even penetrating the inner ducts or orifice of the teat), we wished to compare the outer skin of the udder to colostrum
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.