Abstract

BackgroundSnakebite in India results in over 58,000 fatalities and a vast number of morbidities annually. The majority of these clinically severe envenomings are attributed to Russell’s viper (Daboia russelii), which has a near pan-India distribution. Unfortunately, despite its medical significance, the influence of biogeography on the composition and potency of venom from disparate D. russelii populations, and the repercussions of venom variation on the neutralisation efficacy of marketed Indian antivenoms, remain elusive.MethodsHere, we employ an integrative approach comprising proteomic characterisation, biochemical analyses, pharmacological assessment, and venom toxicity profiling to elucidate the influence of varying ecology and environment on the pan-Indian populations of D. russelii. We then conducted in vitro venom recognition experiments and in vivo neutralisation assays to evaluate the efficacy of the commercial Indian antivenoms against the geographically disparate D. russelii populations.FindingsWe reveal significant intraspecific variation in the composition, biochemical and pharmacological activities and potencies of D. russelii venoms sourced from five distinct biogeographic zones across India. Contrary to our understanding of the consequences of venom variation on the effectiveness of snakebite therapy, commercial antivenom exhibited surprisingly similar neutralisation potencies against the majority of the investigated populations, with the exception of low preclinical efficacy against the semi-arid population from northern India. However, the ability of Indian antivenoms to counter the severe morbid effects of Daboia envenoming remains to be evaluated.ConclusionThe concerning lack of antivenom efficacy against the north Indian population of D. russelii, as well as against two other ‘big four’ snake species in nearby locations, underscores the pressing need to develop pan-India effective antivenoms with improved efficacy in high snakebite burden locales.

Highlights

  • 5.4 million people suffer from snakebite, which results in over 137,000 annual deaths and nearly three times as many morbidities [1]

  • We reveal significant intraspecific variation in the composition, biochemical and pharmacological activities and potencies of D. russelii venoms sourced from five distinct biogeographic zones across India

  • In India, the so-called ‘big four’ snakes, namely the spectacled cobra (Naja naja), common krait (Bungarus caeruleus), Russell’s viper (Daboia russelii) and saw-scaled viper (Echis carinatus), are considered to be the most medically important, with D. russelii seemingly being responsible for the majority of fatal envenomings and cases of long-term morbidity [2]

Read more

Summary

Background

Snakebite in India results in over 58,000 fatalities and a vast number of morbidities annually. The majority of these clinically severe envenomings are attributed to Russell’s viper (Daboia russelii), which has a near pan-India distribution. Despite its medical significance, the influence of biogeography on the composition and potency of venom from disparate D. russelii populations, and the repercussions of venom variation on the neutralisation efficacy of marketed Indian antivenoms, remain elusive. Data Availability Statement: The mass spectrometry data generated in this study has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with data identifier: PXD021060. An archive containing the results of proteomics analyses in HTML format has been added to S1 Data file.

Methods
Findings
Conclusion
Author summary
Introduction
Ethics statement
Results
Limitations of the study
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call