Abstract

Dispersal plays an important role in the establishment and maintenance of biodiversity and, for most deep-sea benthic marine invertebrates, it occurs mainly during the larval stages. Therefore, the mode of reproduction (and thus dispersal ability) will affect greatly the biogeographic and bathymetric distributions of deep-sea organisms. We tested the hypothesis that, for bathyal and abyssal echinoderms and ascidians of the Atlantic Ocean, species with planktotrophic larval development have broader biogeographic and bathymetric ranges than species with lecithotrophic development. In comparing two groups with lecithotrophic development, we found that ascidians, which probably have a shorter larval period and therefore less dispersal potential, were present in fewer geographic regions than elasipod holothurians, which are likely to have longer larval periods. For asteroids and echinoids, both the geographic and bathymetric ranges were greater for lecithotrophic than for planktotrophic species. For these two classes, the relationships of egg diameter with geographic and bathymetric range were either linearly increasing or non-monotonic. We conclude that lecithotrophic development does not necessarily constrain dispersal in the deep sea, probably because species with planktotrophic development may be confined to regions of high detrital input from the sea surface. Our data suggest that more information is necessary on lengths of larval period for different species to accurately assess dispersal in the deep sea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call