Abstract

ABSTRACTThe distribution of the dinoflagellate genus Ceratium Schrank (Dinophyceae) in the North Atlantic and adjacent seas was studied by a combination of new observations on a large number of plankton samples collected from the northeastern Atlantic and North Sea, data from cruises off the east coast of North America and Caribbean Sea, and reports in the literature of the past 90 years. Seventy species were recorded, and their distribution was examined by several methods. Distribution maps were plotted for all species, and from these the ranges of temperature tolerance were derived. The 240 sets of data, which took the form of lists of species present in 5° latitude / longitude blocks obtained from the new work and the published material, were analyzed by clustering and ordination multivariate techniques using the programs Twinspan and Decorana.Analysis of the individual species showed that surface water temperature is the most important factor determining distribution and the number of species in a particular area. Warm water and /or low latitudes have many more species than cold waters and/or high latitudes. For example, at 5°N there are on average 23 species per block, whereas at 60° N there are only 8 species. On the basis of this work, the Ceratium species are divided into Group 1, Arctic‐temperate species normally only found in water of less than 15°C; Group 2, cosmopolitan species, which are found virtually everywhere and are the species most likely to form blooms or “brown water”; Group 3, intermediate species, which extend into neither the coldest nor the warmest water; Group 4, temperate‐tropical species, which have a lower temperature boundary of 5°–12° C; Group 5, warm‐temperate‐tropical species with a lower temperature boundary of 14°–15°C; and Group 6, tropical species, which are rarely found in water of less than 20° C.Analysis of the sample sites also confirmed the predominant influence of temperature, and the Atlantic Ocean was divided into four biogeographical zones of which the boundaries follow isotherms of surface water temperature. Zone 1 consists of the Arctic and subarctic area, with the southern boundary closely following the 10° mean annual temperature (MAT) line. Zone 2 is an intermediate or cold‐temperate zone, of which the southern boundary follows the winter 10° C MAT isotherm or the similarly placed summer 15° isotherm. Zone 3 is the warm‐temperate or subtropical zone, which is very broad. The southern boundary closely follows the 25°C summer isotherm. Zone 4 is the tropical zone, where water temperature is never likely to be much less than 23°C. These findings are discussed in relation to experimental work and environmental observations. We suggest that the genus Ceratium provides an excellent tool for defining ocean currents and temperature changes and may become of value in studies of global change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.