Abstract

Environmental context Dimethylsulfide (DMS) is a climatically important biogenic trace gas that is emitted from oceans. This research focuses on the spatiotemporal distributions of DMS and its related compounds, i.e. dimethylsulfoniopropionate (DMSP) and acrylic acid (AA), and the influencing factors in the Yellow Sea and the Bohai Sea during autumn. In addition, the sea-to-air flux of DMS, kinetic responses of DMSP consumption as well as DMS and AA production are also investigated. This study is helpful in understanding the marine sulfur cycle in marginal seas in China. Abstract The biogeochemistry of dimethylsulfoniopropionate (DMSP), dimethylsulfide (DMS) and acrylic acid (AA) in the Yellow Sea (YS) and the Bohai Sea (BS) was investigated in November 2013. The concentrations (and ranges) of total DMSP (DMSPt), dissolved DMSP (DMSPd), DMS and AA in surface waters were 30.71 (1.07–122.50), 6.60 (0.85–35.67), 1.48 (0.53–5.32) and 42.2 (13.8–352.8) nmol L–1 respectively. The concentrations of DMSPd and AA were positively correlated with chlorophyll-a levels, which suggests that phytoplankton biomass has an important function in controlling DMSPd and AA distributions. Furthermore, DMS and AA concentrations revealed significant positive relationships with DMSPd concentrations. The average ratios of AA/(DMSP+AA) and DMS/AA were 53.98 and 7.62% respectively. The vertical profiles of DMSP, DMS and AA were characterised by high concentrations that mostly occur near the surface. Even under highly variable hydrographic conditions, a positive relationship was observed between DMSPt and chlorophyll-a concentrations. The rates of DMSPd consumption, as well as DMS and AA production, significantly varied with marine environments. The sea-to-air fluxes of DMS from the YS and the BS to the atmosphere were estimated to be in the range of 3.01 to 6.91μmol m–2day–1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call