Abstract

The marine primary producers assimilate the atmospheric CO2 to form the organic carbon in surface water. The organic carbon then settles down through the water column and is removed from the oceans by final preservation in sediments in the form of petroleum or nature gases. The reconstruction of paleoproductivity will thus improve our understanding of the biological processes in the formation of fossil energy resource and help to locate new sites for future exploration. In this study, biorelated elements P, Cd, Al, Ba, as well as redox sensitive element Mo, were analyzed in the 448 rock samples collected from Permian strata at the Shangsi Section, Guangyuan, Northeast Sichuan in China. On the basis of the Ti content, the nondetrital contents of P, Ca, and Al, denoted as Pxs, Cdxs, and Alxs, were calculated and found to coincide with the TOC content throughout the whole section, with some enrichment intervals being found in the middle part of Chihsia Formation, topmost Maokou Formation, and Dalong Formation. This suggests that the biorelated elements could be used as proxies for the paleoproductivity here in this section. Baxs, a paleoproductivity indicator widely used in the paleoceanography, shows insignificant correlation with TOC, Pxs, Cdxs, and Alxs, probably arising from the loss of biological barium in anoxic conditions. Compiled with the data of TOC content and Pxs, Cdxs, and Alxs, three episodes of enhanced paleoproductivity were identified in Permian strata including the middle part of Chihsia Formation, topmost Maokou Formation, and Dalong Formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call