Abstract

Summary1. Wetlands are threatened by desiccation, eutrophication and changing water quality, generally leading to greatly altered biogeochemical processes. Sulphate pollution can lead to severe eutrophication and sulphide toxicity, but may also interact with the availability of iron and other metals.2. In the present study, we examined the biogeochemical interactions between sulphate and iron availability, and their effects on aquatic macrophytes, in a field experiment with enclosures. The natural iron supply by groundwater was mimicked by adding iron to the sediment, and the effect of increased sulphate concentrations in the surface water was also studied. The enclosure experiment was performed in a mesotrophic, anaerobic ditch in a peat meadow reserve in the Netherlands. In all enclosures, three Stratiotes aloides plants were introduced to serve as indicator species.3. Addition of sulphate led to the mobilisation of phosphate, whereas addition of iron or both iron and sulphate did not affect P mobilisation. Growth of S. aloides was decreased by both iron addition and sulphate addition (sulphide toxicity). Addition of iron under sulphidic conditions, however, led to mutual detoxification of both toxicants (iron and sulphide) and did not decrease S. aloides growth. The uptake of metals was highest in the treatment involving sulphate addition, probably as a result of increased mineralisation of the peat soil.4. Growth of Elodea nuttallii, which grew naturally in the enclosures, was stimulated by iron or iron plus sulphate addition. It did not, however, grow in the enclosures with sulphate addition, as a result of sulphide toxicity or sulphide‐induced iron deficiency. Under iron‐rich conditions, E. nuttallii appeared to be a better competitor than S. aloides and depressed the growth of the latter species.5. We propose that the growth of S. aloides is directly regulated by interactions between sulphide and iron and indirectly by the effects of both compounds on the competitive strength of E. nuttallii. In general, we conclude that biogeochemical interactions between sulphate and iron can have a strong influence on plant species composition in freshwater wetlands, because of direct effects or changes in the competitive strength of plant species related to differential sensitivity to either iron or sulphide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.