Abstract
A geographically constrained chronosequence of peatlands divided into three age classes (young, intermediate and old) was used to explore the role of biogeochemical influences, including electron donors and acceptors as well as chemical speciation of inorganic mercury (Hg(II)), on net formation of methylmercury (MeHg) as approximated by the fraction of MeHg to total mercury (THg) in the peat soil. We hypothesized that removing vascular plants would reduce availability of electron donors and thus net MeHg formation. However, we found no effect of the vascular plant removal. The sum of the potential electron donors (acetate, lactate, propionate and oxalate), the electron donation proxy organic C/Organic N, and the potential electron acceptors (Fe(III), Mn and sulfate) in porewater all showed significant correlations with the net MeHg formation proxies in peat soil (MeHg concentration and %MeHg of THg). Thus differences in both electron donor and acceptor availability may be contributing to the pattern of net MeHg formation along the chronosequence. In contrast, Hg(II) concentrations in peat porewater showed small differences along the gradient. A chemical speciation model successfully predicted the solubility of Hg and MeHg in the porewater. The modeling pointed to an enhanced concentration of Hg-polysulfide species in the younger peatlands as a potential factor behind increased Hg(II) solubility and methylation in the more nutrient-rich peatlands. This work contributes to the understanding of Hg and MeHg cycling in peatlands which can help guide mitigation measures to reduce aquatic MeHg biomagnification in peatland dominated landscapes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.