Abstract

This study explores the impact of a wind storm on sediment resuspension and marine biogeochemical dynamics. Additionally, the storm took place during an expedition researching bottom trawling, enabling the direct comparison of certain natural and fisheries-related disturbances. The storm was initiated by a decline in atmospheric pressure and a 2 h period of gale force winds, which was followed by over 40 h of elevated bottom currents. Storm induced turbidity, potentially a cumulative post-fishing impact, was remarkably higher compared to what was observed in a recent trawling event. Storm-induced mixing and movement of water masses led to decreased silicate and increased phosphate concentrations in the water column, accompanied by lower salinity and higher fluorescence. The erosion depth of the seabed averaged around 0.3 cm during the peak turbidity period. Trawl-induced erosion in the area has been measured at over twice that depth, and has been linked to intermittent reductions in near-bed oxygen levels. In contrast, storm-induced turbidity coincided with increased oxygen due to wave mixing, suggesting inherent differences in how trawling and storms can oxidize reduced substances. These findings suggest that storms have a greater regional impact, whereas the local impacts of bottom trawling on biogeochemistry can be more significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.