Abstract

According with niche theory the species are specialized in different ecological niches, being able to coexist as result of a differential use of resources. In this context, the biogeochemical niche hypothesis proposes that species have an optimal elemental composition which results from the link between the chemical and morphological traits for the optimum plant functioning. Thus, and attending to the limiting similarity concept, different elemental composition and plant structure among co-occurring species may reduce competition, promoting different functional niches. Different functional habits associated with leaf life-span or growth forms are associated with different strategies for resource uptake, which could promote niche partitioning. In the present study, based on the biogeochemical niche concept and the use of resources in different proportions, we have focused on leaf traits (morphological and chemical) associated with resource uptake, and explored the niche partitioning among functional habits: leaf life-span (deciduous, evergreen, and semideciduous) and growth (tree, shrub, and arborescent-shrub). To this end, we have quantified the hypervolume of the leaf functional trait space (both structure and chemical composition) in a sample of 45 Mediterranean woody species from Sierra Morena Mountains (Spain) growing along a local soil resource gradient. Our results show consistent variation in functional space for woody communities distributed along the environmental gradient. Thus, communities dominated by deciduous trees with faster growth and a predominant acquisitive strategy were characteristic of bottom forests and showed highest leaf biogeochemical space. While semideciduous shrubs and evergreen (arborescent, trees) species, characterized by a conservative strategy, dominated ridge forests and showed smaller functional space. In addition, within each topographical zone or environment type, the foliar biogeochemical niche partitioning would underlie the species ability to coexist by diverging on leaf nutrient composition and resource uptake. Lower niche overlap among functional habits were found, which support that different growth forms and leaf life-habits may facilitate the coexistence of the woody species and niche partitioning along and within the gradient.

Highlights

  • According to niche theory, species coexistence is promoted by ecological niche differences (MacArthur and Levins, 1967)

  • Assuming that differences in leaf nutrient composition and morpho-structure reflect different ecological strategies, associated with niche partitioning, and so permitting coexistence (McGroddy et al, 2004; Wright et al, 2004; Chen et al, 2011), we hypothesized that: (i) As a consequence of different plant adaptations to maximize their fitness under determined environmental conditions; we expect a segregation in the foliar chemical composition and morphology among the species along the explored soil resource gradient; (ii) the major differences in leaf chemical and morphological traits are found among species with contrasting growth forms and leaf life-spans

  • Communities dominated by deciduous trees with faster growth and a predominant acquisitive strategy were characteristic of riparian forests, while semideciduous shrubs and evergreen species, characterized by a conservative strategy, dominated ridge forests

Read more

Summary

INTRODUCTION

Species coexistence is promoted by ecological niche differences (MacArthur and Levins, 1967). Assuming that differences in leaf nutrient composition and morpho-structure reflect different ecological strategies, associated with niche partitioning, and so permitting coexistence (McGroddy et al, 2004; Wright et al, 2004; Chen et al, 2011), we hypothesized that: (i) As a consequence of different plant adaptations to maximize their fitness under determined environmental conditions; we expect a segregation in the foliar chemical composition and morphology among the species along the explored soil resource gradient (mainly soil water availability); (ii) the major differences in leaf chemical and morphological traits are found among species with contrasting growth forms and leaf life-spans. This implies that coexisting species would share their niches by using different ranges and proportions of resources, assuming trade-offs in resource allocation

MATERIALS AND METHODS
RESULTS
Findings
DISCUSSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call