Abstract
Zinc (Zn) is vital to marine organisms. Its active uptake by phytoplankton results in a substantial depletion of dissolved Zn, and Zn bound to particulate organic matter replenishes dissolved Zn in the ocean through remineralization. However, we found that particulate Zn changes from Zn bound to phosphoryls in cells to recalcitrant inorganic pools that include biogenic silica, clays, and iron, manganese, and aluminum oxides in the Southern Ocean water column. The abundances of inorganic pools increase with depth and are the only phases preserved in sediments. Changes in the particulate-Zn speciation influence Zn bioavailability and explain the decoupling of Zn and phosphorus and the correlation of Zn and silicon in the water column. These findings reveal a new dimension to the ocean Zn cycle, implicating an underappreciated role of inorganic Zn particles and their impact on biological productivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.