Abstract

In recent years, many strategies have been developed for the biological synthesis of different types of metal nanoparticles, which have been successfully synthesized from various plant extracts and analyzed. Recent studies have demonstrated that nanoparticles have highly promising antimicrobial, antiviral, and anti-cancer properties. In the present study, biological synthesis of Ricinuscommunis leaves was performed with iron and silver nanoparticles. The synthesized iron and silver nanoparticles were characterized by UV–Vis spectroscopy, Fourier transform infrared (FT-IR), X-Ray Diffraction (XRD), Scanning electron microscopy (SEM) with Energy dispersive spectroscopy (EDS), and Transmission electron microscopy (TEM). GC-MS analysis of the Ricinus communis revealed the secondary metabolites of total phenolic and flavonoid contents of the extract, which are responsible for the bio-reduction reaction during nanoparticle synthesis. The UV–Vis spectrum shows Plasmon peaks at 340 nm and 440 nm for iron and silver nanoparticles, respectively. XRD results revealed crystalline structure, while TEM, SEM, and EDS identified iron and silver with mostly cuboidal and spherical shapes. Antimicrobial activity was also performed, and it was found that both nanoparticles were active against Salmonella typhi (6 ± 0.073) and (7 ± 0.040), Staphylococcus aureus, and Aspergillus flavus. MIC was also performed, and AgNPs gave a better bactericidal effect against Staphylococcus aureus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call