Abstract

Silver nanoparticles (AgNPs) have several technological applications and may be synthetized by chemical, physical and biological methods. Biosynthesis using fungi has a wide enzymatic range and it is easy to handle. However, there are few reports of yeasts with biosynthetic ability to produce stable AgNPs. The purpose of this study was to isolate and identify soil yeasts (Rhodotorula glutinis and Rhodotorula mucilaginosa). After this step, the yeasts were used to obtain AgNPs with catalytic and antifungal activity evaluation. Silver Nanoparticles were characterized by UV-Vis, DLS, FTIR, XRD, EDX, SEM, TEM and AFM. The AgNPs produced by R. glutinis and R. mucilaginosa have 15.45 ± 7.94 nm and 13.70 ± 8.21nm (average ± SD), respectively, when analyzed by TEM. AgNPs showed high catalytic capacity in the degradation of 4-nitrophenol and methylene blue. In addition, AgNPs showed high antifungal activity against Candida parapsilosis and increase the activity of fluconazole (42.2% for R. glutinis and 29.7% for R. mucilaginosa), while the cytotoxicity of AgNPs was only observed at high concentrations. Finally, two yeasts with the ability to produce AgNPs were described and these particles showed multifunctionality and can represent a technological alternative in many different areas with potential applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call