Abstract

Phosphonates are a class of organic phosphorus (P) compounds that contribute ~25% of dissolved organic P. Recent studies reveal the important role of phosphonates mediated by prokaryotes in the marine P redox cycle. However, its bioavailability by eukaryotic phytoplankton is under debate. 2-Aminoethylphosphonic acid (2-AEP) and 2-amino-3-phosphonopropionic acid (2-AP3) are two biogenic phosphonates in the marine environment. Here, Thalassiosira pseudonana, a common diatom species in the ocean, is able to recover growth from P starvation when provided with 2-AEP and 2-AP3. Moreover, 2-AEP cultures exhibited a more similar growth rate at 12 °C than at 25 °C when compared with inorganic P cultures. The cellular stoichiometry of 2-AEP groups was further determined, the values of which are in-between the P-depleted and DIP-replete cultures. This study provides evidence that biogenic phosphonates could be adopted as alternative P sources to support diatom growth and may provide physiological adaptation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call