Abstract

BackgroundTranslating the conventional scientific concepts into a new robust invention is a much needed one at a present scenario to develop some novel materials with intriguing properties. Particles in nanoscale exhibit superior activity than their bulk counterpart. This unique feature is intensively utilized in physical, chemical, and biological sectors. Each metal is holding unique optical properties that can be utilized to synthesize metallic nanoparticles. At present, versatile nanoparticles were synthesized through chemical and biological methods. Main body of abstractMetallic nanoparticles pose numerous scientific merits and have promising industrial applications. But concerning the pros and cons of metallic nanoparticle synthesis methods, researchers elevate to drive the synthesis process of nanoparticles through the utilization of plant resources as a substitute for use of chemicals and reagents under the theme of green chemistry. These synthesized nanoparticles exhibit superior antimicrobial, anticancer, larvicidal, leishmaniasis, wound healing, antioxidant, and as a sensor. Therefore, the utilization of such conceptualized nanoparticles in treating infectious and environmental applications is a warranted one. ConclusionGreen chemistry is a keen prudence method, in which bioresources is used as a template for the synthesis of nanoparticles. Therefore, in this review, we exclusively update the context of plant-based metallic nanoparticle synthesis, characterization, and applications in detailed coverage. Hopefully, our review will be modernizing the recent trends going on in metallic nanoparticles synthesis for the blooming research fraternities. Graphical abstract▪

Highlights

  • ConclusionGreen chemistry is a keen prudence method, in which bioresources is used as a template for the synthesis of nanoparticles

  • Traditional nano concepts and its applications Nanotechnology is not an era of modern science while reverting to history; nanotechnology exists in the history of arts and nature beings

  • Conclusion we have comprehensively provided the recent trends in the synthesis of metallic nanoparticles through plants only

Read more

Summary

Conclusion

We have comprehensively provided the recent trends in the synthesis of metallic nanoparticles through plants only. The present review aims to the concept and demands the need for a synthesis of metallic nanoparticles from various plants. We advocated the applications of metallic nanoparticles such as antimicrobial, antioxidant, anticancer, anti-inflammatory, wound healing, larvicidal, and leishmanicidal activities of metallic nanoparticles in context with recent findings. We highlighted the future perspective of metallic nanoparticles with strong recommendations and necessitate the changes to be adopted for developing metallic nanoparticles as a safe biocompatible agent. Overall, considering all the above scientific merits and demerits of metallic nanoparticles, researchers tune their research toward metallic nanoparticles from plants by ease process and develop such kinds of metallic nanoparticles as theranostics for various infectious and noninfectious diseases

Background
Main text
References eucalyptus leaf Iron
Zinc Albizia lebbeck oxide
Findings

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.