Abstract

A novel bacterial strain containing biogenic magnetic nanoparticles (BMNPs) was isolated from the sediments of Songhua River in Harbin, China, and was identified as Burkholderia sp. YN01. Extracted BMNPs from YN01 were characterized as pure face-centered cubic Fe3O4 with an average size of 80 nm through transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The hysteresis parameters of the BMNP samples such as Bc and Bcr and ratios Mrs/Ms were deduced as 35.6 mT, 43.2 mT, and 0.47, respectively, indicating that the BMNPs exhibit a ferromagnetic behavior. This is the first report concerning on biogenic Fe3O4 NPs produced in Burkholderia genus. Significantly, the BMNPs were proved to possess intrinsic peroxidase-like activity that could catalyze the oxidation of peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. Kinetic analysis indicates that the catalytic behavior is in accord with typical Michaelis-Menten kinetics and follows ping-pong mechanism. The catalytic constants (K cat) were 6.5 × 10(4) s(-1) and 0.78 × 10(4) s(-1) with H2O2 and TMB as substrate, respectively, which was higher than that of horseradish peroxidase (HRP). Electron spin resonance (ESR) spectroscopy experiments showed that the BMNPs could catalyze H2O2 to produce hydroxyl radicals. The origin of peroxidase-like activity is also associated with their ability to transfer electron between electrode and H2O2 according to an electrochemical study. As a novel peroxidase mimetic, the BMNPs were employed to offer a simple, sensitive, and selective colorimetric method for H2O2 and glucose determination, and the BMNPs could efficiently catalyze the degradation of phenol and Congo red dye.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call