Abstract

Fibromyalgia is a prevalent and burdensome disorder characterized by chronic widespread pain and complex comorbid symptoms. To develop better treatments for pain-centered fibromyalgia symptoms, there is still a need for animal models which mimic the features of fibromyalgia patients. In the present study, we have established a fibromyalgia animal model by utilizing a never-before-published pharmacological effect of reserpine. Repeated administration of reserpine (1 mg/kg s.c., once daily, for three consecutive days) causes a significant decrease in the muscle pressure threshold and tactile allodynia, which are sustained for 1 week or more in both male and female rats. This treatment regimen decreases the amount of biogenic amines (dopamine, norepinephrine, and 5-hydroxytryptamine) in the spinal cord, thalamus, and prefrontal cortex, which are deeply involved in pain signal processing. It also significantly increases immobility time in the forced swim test, which is indicative of depression, a common comorbid symptom of fibromyalgia. Pregabalin, duloxetine, and pramipexole significantly attenuated the reserpine-induced decrease in muscle pressure threshold, but diclofenac did not. The validity of the use of this reserpinized animal as a fibromyalgia model is demonstrated from three different aspects, i.e., face validity (manifestation of chronic pain and comorbid symptoms), construct validity (dysfunction of biogenic amine-mediated central nervous system pain control is involved), and predictive validity (similar responses to treatments used in fibromyalgia patients). This animal model is expected to contribute to the better understanding of fibromyalgia pathophysiology and the evaluation of drugs, especially those which would activate biogenic amine system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.