Abstract

In the management of UNESCO cultural sites of significant environmental importance, the erroneous assumption that the environment is independent of biological heritage often prevails. The mapping of phylogenetic resources in the ancient city Matera-Sassi (MS) and the multivariable analysis at the level of ecotope and habitat have made it possible to identify the consistency of the plant genetic heritage and the biogenetic associations between the different ecotopes through the species they host. The bioclimatic variables and geomorphology of MS define an ecological niche refuge for rare or absent species in the surrounding landscape (e.g., Campanula versicolor L., Centranthus ruber (L.) Dc., Capparis spinosa L., Cymbalaria muralis Hill, Crepis spp., Lavathera arborea L.) The total floristic capital in MS amounts to 190 species belonging to 59 different botanical families; 80% are native species and only 4% are invasive. About half are Mediterranean with a moderate presence (17%) of cosmopolitan and sub-cosmopolitan; 5% are endemic species. Autogenic ecotopes (Type I) represented by “Pleistocene limestone” and “House wall” contribute to the variation of total biodiversity through Endemic species mainly Chamephytes; anthropogenic ecotopes (Type III) such as “Garden” and “Town boundary” with Archaeophytes and exotic Neophytes mainly Phanerophytes; while “Humid margins” and mixed ecotopes (Type II) are linked to feral species and mainly to hemi-cryptophytes and therophytes. Minimum spanning tree of the habitat features traced by the floristic biological heritage is consistent with the pedogenetic relationships between primary mother rocks, their derived ecotopes and anthropogenic impacts. Ecotope ranking based on its biodiversity value indicates that appropriate simultaneous conservation of both genetic resources and human works is achievable.

Highlights

  • Biogenetic linkages among ecotopes within habitat rise theoretical considerations about the interaction between environment and phenotype

  • In the management of UNESCO cultural sites of significant environmental importance, the erroneous assumption that the environment is independent of biological heritage often prevails

  • The mapping of phylogenetic resources in the ancient city Matera-Sassi (MS) and the multivariable analysis at the level of ecotope and habitat have made it possible to identify the consistency of the plant genetic heritage and the biogenetic associations between the different ecotopes through the species they host

Read more

Summary

Introduction

Biogenetic linkages among ecotopes within habitat rise theoretical considerations about the interaction between environment and phenotype. This thesis leads to the hypothesis that environments exist without species. The vital activities of organisms and their relevant aspects that can be identified through their presence allow us to identify the environment that is relevant to them. The spatial distribution of species can be understood whether the environment is seen as a space defined by the vital activities of organisms rather than as a physical component. Do organisms determine which part of the outside world is most appropriate to their living conditions but, through their vital activities, they build the environment around them. Based on the degree of species specialization it is possible to link biogenetically the whole set of ecotopes within heterogeneus habitats

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call