Abstract

The mitochondrial inner membrane of Saccharomyces cerevisiae contains a group of homologous carrier proteins that mediate the exchange of several metabolites. The members of this protein family are synthesized in the cytosol and reach their final topology after translocation across the mitochondrial outer membrane. Using the ADP/ATP carrier (AAC) as a model protein, previous studies have established four distinct steps of the import pathway (stages I-IV). In the absence of the mitochondrial membrane potential (ΔΨ), the AAC accumulates at the inner surface of the outer membrane (stage IIIa) and remains bound to the outer membrane import channel. Only in the presence of the membrane potential, can a complex of small Tim proteins mediate transfer of the AAC to the inner membrane. In this study, we characterized the import pathway of the dicarboxylate carrier (DIC). Different from the AAC, the DIC showed complete ΔΨ-independent translocation across the outer membrane, release from the import pore, and mainly accumulated in a soluble state in the intermembrane space, thus defining a new translocation intermediate (stage III∗). The DIC should be a suitable model protein for the characterization of ΔΨ-independent functions of the intermembrane space Tim proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.