Abstract

Gram-negative bacteria ubiquitously release membrane vesicles (MVs) into the extracellular milieu. Although MVs are the product of growing bacteria, not of cell lysis or death, the regulatory mechanisms underlying MV formation remained unknown. We have found that MV biogenesis is provoked by the induction of PagC, a Salmonella-specific protein whose expression is activated by conditions that mimic acidified macrophage phagosomes. PagC is a major constituent of Salmonella MVs, and increased expression accelerates vesiculation. Expression of PagC is regulated at the posttranscriptional and/or posttranslational level in a sigmaS (RpoS)-dependent manner. Serial quantitative analysis has demonstrated that MV formation can accelerate when the quantity of the MV constituents, OmpX and PagC, rises. Overproduction of PagC dramatically impacts the difference in the relative amount of vesiculation, but the corresponding overproduction of OmpX was less pronounced. Quantitative examination of the ratios of PagC and OmpX in the periplasm, outer membrane, and MVs demonstrates that PagC is preferentially enriched in MVs released from Salmonella cells. This suggests that specific protein sorting mechanisms operate when MVs are formed. The possible role(s) of PagC-MV in host cells is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.