Abstract

Growth under conditions of oxygen restriction results in a generalized decrease in the definition of the mitochondrial membranes, a decrease in the mitochondrial cytochromes, and a decrease in citric acid cycle enzymes of the obligate aerobic yeast Candida parapsilosis. Addition of unsaturated fatty acids and ergosterol to cultures exposed to limited oxygen results in improved definition of the mitochondrial membranes and an increase in the total mitochondrial cytochrome content of the cells. Euflavine completely inhibits mitochondrial protein synthesis in vitro. Its in vivo effect is to cause the formation of giant mitochondrial profiles with apparently intact outer membranes and modified internal membranes; the cristae (in-folds) appear only as apparently disorganized remnants while the remainder of the inner membrane seems intact. Cytochromes a, a(3), b, and c(1) are not synthesized by the cells in the presence of euflavine. Ethidium appears to have effects identical to those of euflavine, whereas chloramphenicol, lincomycin, and erythromycin have similar effects in principle but they are less marked. The effects of all the inhibitors are freely reversible after removal of the drugs. The results are discussed in terms of a functionally three-membrane model of the mitochondrion. In addition, the phylogenetic implications of the observed differences between this organism and the facultative anaerobic yeasts are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.