Abstract

Afipia felis is a Gram-negative α-proteobacterium, a rare cause of human cat scratch disease (CSD), and likely a pathogen of amoeba. Here, we show that various members of the genus Afipia attach to and are taken up by various non-professional phagocytic mammalian cells (epithelial CHO, endothelial EA.hy926, epithelial HeLa, epithelial INT407 cells, endothelial HMEC-1, endothelial HUVEC, and fibroblast L929 cells). However, only A. felis was able to do this efficiently. Invasion depended on a functional actin cytoskeleton and much less on microtubule dynamics. Bacteria were slowly taken up into HMEC-1 (and HUVEC) via pocket-like structures and they resided within membrane-surrounded phagosomes. While A. felis was found in a non-canonical endocytic compartment in macrophage cells, Afipia-containing phagosomes in HMEC-1 were transiently positive for early endosomal EEA1 and then became and remained positive for lysosome-associated membrane protein-1 (LAMP1) and the proton-pumping ATPase, suggesting undisturbed, albeit slowed, phagosome biogenesis in these cells. Similarly, at 24 h of infection, most phagosomes in HeLa, INT407, HUVEC and in EA.hy926 cells were positive for LAMP1. In summary, A. felis enters various non-professional phagocytes and its compartmentation differs between macrophages and non-professional phagocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call