Abstract

The combined steam/dry reforming (S/DR) technology was used to produce syngas from clean biogas. In the reaction conditions proposed, the catalytic bed can produce, without deactivation, a syngas with a H2/CO ratio of ≈2 directly processable for methanol or Fischer–Tropsch syntheses. Starting from the laboratory data obtained in the industrial conditions, mass and energy balances for the overall process were obtained from Aspen HYSYS simulations. The environmental evaluation was performed by applying the life cycle assessment (LCA) methodology, comparing different scenarios to the current industrial route to produce syngas (autothermal reforming or ATR of natural gas). The analysis showed that clean biogas-to-syngas technology using reforming processes has the potential to reduce the anthropogenic impact on the environment. The ReCiPe method showed that when the combined S/DR process is conducted using clean biogas also as a heat source, the CO2 balance turns negative, ensuring that the whole process has excellent potential as carbon capture and utilization (CCU) technology providing the lowest damage in all categories. Its improvement would make it possible to further reduce the environmental burden of the overall process, which is essential for achieving sustainable development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.