Abstract
A series of bimetallic PdNi catalysts supported on alumina modified with different amounts of phosphorus (0.5–5 wt%) were prepared. The effect of phosphorus content on the structure, surface properties and catalytic behavior of supported PdNi catalysts in biogas reforming was studied. The physicochemical properties of the samples were characterized by using different techniques: N 2 adsorption–desorption isotherms, X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), temperature-programmed desorption of ammonia (TPD), thermogravimetric and differential thermal analysis (TG/DTA) and scanning transmission electron microscopy (STEM). The catalytic properties of the catalysts were evaluated in the reaction of reforming of methane with CO 2. It was shown that increasing the P content (≥1 wt%) leads to agglomeration of the metal Ni particles, as well as to increase of the total acidity of the catalysts. Within bimetallic system, the PdNi catalyst with 0.5 wt% phosphorus showed the best performance and stability caused by the presence of highly dispersed nickel particles on the catalyst surface due to the strong interaction between supported species and alumina.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.