Abstract
Biogas production technology not only constitutes a biofuel source, but also can be a mitigation measure for the various environmental pollutants. This technology, i.e., anaerobic digestion is a biological process that takes place naturally when microorganisms break down organic matter in the absence of oxygen. In an enclosed chamber, controlled anaerobic digestion of organic matter produces biogas which is predominantly methane. The produced methane then can be directly used; or after certain conditioning, can be used in onsite power generation, heating homes or as vehicular fuel. Besides, organic waste is increasingly becoming a major problem in every society imposing serious economic and environmental concerns. For this reason, many contemporary researches are emphasizing in finding sustainable solutions to recycle and produce energy from such waste. In this context, this paper aims to investigate the potential of cow and chicken manure, and olive waste for biogas production obtained through the anaerobic digestion process.
 The substrates were placed in laboratory scale digesters without pretreatment. The retention time in the digesters was 30 days. The samples of the tested substrates were collected and analyzed for pH, total solids, ash, and the content of volatile solids (VS). Under mesophilic conditions, all combinations of cow and chicken manure, and olive waste with sludge by an anaerobic pond of a trickling filter treatment plant, as co-substrate, significantly improved biogas, and methane yields. The experimental results showed that chicken manure (CM) is the most suitable for anaerobic digestion (AD).
 The next step of the study will consist in implementing a large scale of biogas production plants and we will estimate the national potential of green energy produced by this technology and map the areas that need digesters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Engineering and Technology Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.