Abstract

The rapidly declining fossil fuels are no longer able to meet the ever-increasing energy demand. Moreover, they are considered responsible for greenhouse gas (GHG) emission, contributing to the global warming. On the other hand, organic wastes, such as kitchen waste (KW) and poultry manure (PM), represent considerable pollution threat to the environment, if not properly managed. Therefore, anaerobic co-digestion of KW and PM could be a sustainable way of producing clean and renewable energy in the form of biogas while minimizing environmental impact. In this study, the anaerobic co-digestion of KW with PM was studied to assess the rate of cumulative biogas (CBG) production and methane percentage in four digester setups (D1, D2, D3, and D4) operated in batch mode. Each digester setup consisted of five parallelly connected laboratory-scale digesters having a capacity of 1 L each. The digester setups were fed with KW and PM at ratios of 1:0 (D1), 1:1 (D2), 2:1 (D3), and 3:1 (D4) at a constant loading rate of 300 mg/L with 50 gm cow manure (CM) as inoculum and were studied at both room temperature (28 °C) and mesophilic temperature (37 °C) over 24 days. The co-digestion of KW with PM demonstrated a synergistic effect which was evidenced by a 16% and 74% increase in CBG production and methane content, respectively, in D2 over D1. The D3 with 66.7% KW and 33.3% PM produced the highest CBG and methane percentage (396 ± 8 mL and 36%) at room temperature. At mesophilic condition, all the digesters showed better performance, and the highest CBG (920 ± 11 mL) and methane content (48%) were observed in D3. The study suggests that co-digestion of KW and PM at mesophilic condition might be a promising way to increase the production of biogas with better methane composition by ensuring nutrient balance, buffering capacity, and stability of the digester.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.