Abstract

Cassava tubers produced under hot, dry and monsoon governed climate in the Salem region, Tamil Nadu, South India, consume together with the about 1000 starch extracting industries daily, 9 millions of litres of groundwater which have to be pumped from a depth of 80 m below ground level. Because of water shortage, adjacent fields are irrigated with organically highly enriched sago factories wastewater and the land becomes unproductive. One-third of the wastewater is presently channelled through a few installed biogas plants with a purification efficiency, biological oxygen demand, of only around 30%. Microbiologically and chemically analysed in- and effluents of biogas plants exhibited nutrient contents sufficient to maintain a rice crop and significantly higher population densities of fermenting bacteria and methanogenic archaea, despite C/N ratio of about 250. CO2 and CH4 emissions from aerobic and anaerobic incubated sago factory biogas plants in- and effluents indicated that the present purification efficiency of 30% can be further enhanced. This investigation has given clues for designing a purification system that connects the already installed biogas plants with a well-aerated, hydro-cultured, constructed wetland and a Stirling motor device for electric power gains and heat distillation, for enabling reuse of process water and saving groundwater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.