Abstract

The current investigation delved into the utilization of cattle and municipal sanitary inocula for anaerobic digestion of poultry wastes, addressing a crucial and pragmatic challenge in waste management. The emphasis on poultry waste is pertinent due to its well-documented impediments in anaerobic digestion, attributed to heightened levels of ammonia and volatile fatty acids (VFAs). The strategic selection of cattle and municipal sanitary inocula suggests an approach aimed at bolstering the anaerobic digestion process. In this study, we evaluated the use of cattle and municipal sanitary inocula for the anaerobic digestion of various poultry wastes, which is often challenged by high levels of ammonia and volatile fatty acids (VFAs). The substrates tested included belt waste (Poultry A), poultry litter plus feed residues (Poultry B), tray hatchery ©, and stillage. These substrates were processed in two continuous stirred tank reactors (CSTRs), R-1 (with antibiotic monensin) and R-2 (without monensin). Initially, both reactors operated with the same hydraulic retention time (HRT), using a substrate ratio of stillage: belt: tray hatchery (S:B:T) of 70:15:15. On the 41st day, the HRT was adjusted to 20 days, and the substrate ratio was changed to S:A:T 70:40:40. The specific methane yield for R-1 started at 10.768 L g−1 COD, but decreased to 2.65 L g−1 COD by the end of the experiment. For R-2, the specific methane yield varied between 0.45 L g−1 COD and 0.243 L g−1 COD. Microbial composition in the reactors changed over time. In R-1, bacteroides were consistently dominant, while firmicutes were less abundant compared to R-2. Proteobacteria were initially low in abundance, but spirochetes were found in both reactors throughout the experiment. The study concluded that Poultry B substrates, due to their rich nutrient and trace element composition, are suitable for biogas plants. Municipal sanitary inocula also showed promise due to their resilience in high ammonia concentrations. Further research into biofilm interactions is recommended to better understand microbial responses to high ammonia concentrations, which can lead to propionate production in anaerobic digestion (AD).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call