Abstract
Engineered scaffolds simultaneously exhibiting multiple cues are highly desirable for neural tissue regeneration. Silk fibroin is a promising natural protein material for nerve repair. However, the lack of specific bioactive cues significantly hinders its application. In this study, the electrospun silk fibroin nanofibers with both biochemical and topographical cues were prepared. The alignment of electrospun nanofibers was optimized by controlling the surface linear velocity of a rotating drum. The silk fibroin nanofibers were further functionalized with laminin through covalent binding, confirmed by immunostaining observation. Cell proliferation and neurite outgrowth assays confirmed that the functionalized aligned nanofibers significantly enhanced directional axonal extensions, providing physical and bioactive cues for neurite outgrowth. Furthermore, the tubular scaffolds with longitudinally aligned microchannels were designed by rolling the functionalized silk fibroin nanofibers. The neurite extension across the lumen of the conduit along the direction of the aligned fibers is apparent. These results highlight the ability of laminin-immobilized silk fibroin nanofibers to enhance neurite outgrowth and to control directional neurite extension, providing a useful approach to construct a regenerative microenvironment for nerve repair materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.