Abstract

Multi-armed dendritic polyaniline nanofibers (MPANFs) were first synthesized and functionalized with horseradish peroxidase (HRP) and carcinoembryonic antibody (anti-CEA) for highly efficient electrochemical immunoassay of carcinoembryonic antigen (CEA, as a model analyte here) in this work. Transmission electron microscope (TEM) and scanning electron microscope (SEM) techniques were employed to characterize the synthesized MPANFs. By using anti-CEA-conjugated core-shell gold-Fe(3)O(4) nanocomposites (GoldMag) as immunosensing probes and biofunctionalized MPANFs as molecular tags, a new sandwich-type homogeneous immunoassay strategy was developed for the determination of CEA by coupling with a home-made flow-through magneto-controlled microfluidic device. Under optimal conditions, the electrochemical immunoassay exhibited a wide dynamic range of four orders of magnitude from 1.0 pg mL(-1) to 50 ng mL(-1) with a low detection limit of 0.1 pg mL(-1) CEA at 3σ. Intra- and inter-assay coefficients of variation were below 10%. The assayed results for clinical serum specimens with the electrochemical immunoassay were received in good accordance with the results obtained from the referenced enzyme-linked immunosorbent assay (ELISA) method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call