Abstract

PSS-co-MA), and linked N-Cadherin to the polymer surface. These electrodes were tested for recording artificially generated electric potentials, as well as multiunit activity (MUA), sharp wave-ripple complexes (SWRs), and field excitatory postsynaptic potentials (fEPSPs) in rat hippocampal slices. The effects of electrode length and functionalization were compared. PSS-co-MA coating improved electric current detection and reduced the electrical noise but had no significant effect on the amplitude of recorded biopotentials. Surface biofunctionalization lowered the electric current flow, and further reduced the electrical noise. Additionally, it increased the amplitude of the recorded MUA, finally doubling the signal-to-noise ratio achieved with bare carbon MFs. Biofunctionalization benefits were apparent only for potentials from cells putatively adjacent to the microelectrode. Analysis of fEPSPs excluded adverse effects of functionalized electrodes in basal synaptic transmission. These results demonstrate the possibility of enhancing the amplitude and signal-to-noise ratio of neural recordings by coating the microelectrodes with conducting polymers modified with neural cell adhesion molecules, and support the use of biofunctionalized MFs in advanced neuroprosthetic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.