Abstract

Polyetheretherketone (PEEK) has favorable biomechanical properties to be used as an implant material. Unfortunately, it is hydrophobic and does not promote cellular adhesion, which could result in poor integration with bone tissue. Bio-functionalization of PEEK surface with osteogenic peptides derived from bone extracellular matrix proteins is an excit-ing approach to encourage bone formation around the implant. In the current study, bone-forming peptide-2 was immo-bilized on PEEK surface using two different methods, using dopamine and a diglycidyl ether as conjugate compounds, respectively. Peptide quantification test revealed that the two strategies resulted in the most amount of peptides were attached with 0.5 mM concentration and no further peptides were grafted with a higher peptide concentration. Both methods showed good peptide stability after agitation in aqueous solution. Peptide grafting was confirmed with ATR-FTIR. Surface characterizations with AFM and wettability tests resulted in a significant increase in surface roughness and surface area ratio for the peptide-grafted PEEK compared to unmodified PEEK, which led to a signifi-cant enhancement in the wettability of the modified PEEK surface

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.