Abstract

Mimicking the in vivo microenvironment of cells is a challenging task in engineering in vitro cell models. Surface functionalization is one of the key components providing biochemical cues to regulate the interaction between cells and their substrate. In this study, two different approaches yield biofunctional surface patterns on thermoformed polymer films. The first strategy based on maskless projection lithography enables the creation of grayscale patterns of biological ligands with a resolution of 7.5 μm in different shapes on a protein layer adsorbed on a polymer film. In the second strategy, polymer films are micropatterned with different functional groups via chemical vapor deposition polymerization. After thermoforming, both types of pattern can be decorated with proteins either by affinity binding or covalent coupling. The 3D microstructures retain the biofunctional patterns as demonstrated by selective cell adhesion and growth of L929 mouse fibroblasts. This combination of functional micropatterning and thermoforming offers new perspectives for the design of 3D cell culture platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.